
IDNs
A brief whirlwind tour

August 20, 2013

IDNs
Assumptions

August 20, 2013

Assumptions
• Familiar with DNS:

• What it is…
• What it is used for…
• High-Level understanding of how it works…

• Familiar with the Domain Name Industry:
• ICANN
• Registries
• Registrars
• ccTLDs, TLDs
• etc

• Familiar with issues that surround domain names such as phishing and
other forms of domain name abuse

3

DNS
Traditional DNS

August 20, 2013

Traditional DNS
• Typically, only allows the characters ‘a-z,A-Z,0-9,-’
• In special cases other characters are allowed, but can be ignored for

this discussion
• Uses an encoding system known as ASCII (more on this later)
• It is case ‘insensitive’ which means that the following DNS names are

all considered equivalent (that is they will return the same answer
when you look them up in the DNS). Which is what as a human we
would expect:

• APPLE
• apple
• Apple
• ApPlE
• aPpLe
• APPle

• This is built into the DNS protocol

5

Internationalizing DNS
• In order to internationalize DNS, i.e. allow DNS names to

include more than just the Latin alphabet, a way had to be
found to include the additional characters (called code
points) without breaking backwards compatibility

• But first an aside…

Any info (title, subtitle etc.)
6

Computers & People
ASCII

August 20, 2013

Computers vs People
• People talk with letters
• Computers talk with numbers
• To make computers human friendly we need a way to translate

between the two…
• One of the most widely used systems is ASCII (used by standard DNS)
• ASCII defines a system of numbers that map to ‘letters’
• ASCII typically only covers the latin alphabet, digits and some symbols

• 65 -> A
• 66 -> B
• 67 -> C
• 97 -> a
• 98 -> b
• 99 -> c
• 37 -> %

8

ASCII example
• A group of letters in sequence is referred to as a ‘string’
• So ‘abcde’ is a string, consisting of the letters a, b, c, d and e
• In a computer the string ‘cat’ is represented internally as the sequence

of numbers 99, 97 and 116 (the corresponding numbers in our ASCII
table)

• When a computer is asked ‘are these two stings the same’ it simply
checks to see if all the numbers that represent the letters in each
position of the two strings are equal, if they are the strings are the
same

• When a computer is asked to convert a string to upper case it will
iterate over the ‘numbers’ and replace each number that represents a
lower case letter with the number that represents the corresponding
upper case version of that letter

• When a computer is asked to case insensitively compare two strings it
will typically convert them both to the same case first, this is typically
referred to as lowercasing, or uppercasing

9

Computers & People
Unicode

August 20, 2013

Another mapping…
• Another mapping that is widely used with computers these days, to provide

‘internationalization’ is called ‘Unicode’.
• Unicode is, amongst other things, a giant table of ‘code points’. It is defined by a

consortium of interested parties – The Unicode Consortium
• A code point is a number that is assigned to represent a different character or

glyph, e.g.:
• 97 -> a
• أأ <- 1571

• In Unicode, the Latin letters maintain the same number mapping as in ASCII
• However number mappings are defined for hundreds of thousands of other

‘characters’ or ‘glyphs’ from all different languages including Simplified Chinese,
Traditional Chinese, Arabic, Greek etc and even some obscure things such as
musical notes, symbols and Klingon

• Code points numbers are normally represented in Hexadecimal (a short hand way
of writing big numbers) and written with a U+ in front of them. E.g.:

• U+0061 -> a
• U+0623 -> أأ

11

Another mapping…
• Unicode also defines a collection of ‘procedures’ that can be followed

to perform things such a lower casing a string, sorting (comparing)
strings and so forth

• Unicode has evolved over time, there are new versions of it in constant
development

• Backwards compatibility is between versions is a consistent goal, that is
almost always met

• Almost every major computer system (designed for human use) today
(Windows, Linux, OSX etc..) has support for Unicode

• However a lot of ‘infrastructure’ (routers, switches) may be left behind
• Also a lot of software is not written to be Unicode aware (for various

reasons, especially older software)
• Most DNS implementations fall into this category

12

Challenges of Unicode
• Unicode brings with it a new set of challenges, any one who uses it, needs

to be aware of these. Some examples:
• Same Glyph with multiple mappings

• U+0623 (أأ) – Arabic Alef with High Hamza
• U+0672 (ٲ) – Farsi Alef with High Hamza
• Latin B (U+0042), (lowercases to b (U+0062) in Latin, β (U+03B2) in Greek

and в (U+0432) in Cyrillic), therefore there are 3 code points for B (so the
right lowercase can be used):
• B (U+0042) -> b (U+0062)
• B (U+0392) -> β (U+03B2)
• B (U+0412) -> в (U+0432)

• Combing marks (same Glyph, different sequence of code points)
• اا أأ which renders as - (U+0627,U+0654) ◌ٔٴ
• (U+0623) أأ

• Zero width joiner / non-joiner – a code point that doesn’t display!
• To users it is reasonable for them to expect these will all ‘be the same’ as

they all look the same, but to a computer (number by number comparison,
they are different (not the same))

13

Challenges of Unicode
• Special ‘case’ scenarios

• German ß (U+00DF), (uppercases to SS, which then lower cases to ss,
but there also exists an uppercase version)

• Greek Σ (U+03A3), lowecase to σ (U+03C3), unless in the final position
of a word where it lowercases to ς (U+03C2) (think about how multiple
words are used in domain names)

• Technical limitations of implementations
• Excel may display numbers using code points from other languages,

internally they are stored as values and converted on display, this can
(not always) affect copy and paste (for example).

• Again users have, reasonable, expectations that these things just work
(as they do in the ‘languages’ they represent)

14

Challenges of Unicode
• Unicode provides some ‘procedures’ to deal with

these
• Case fold (context agnostic)
• Case mapping (context sensitive)
• NFC
• NFD
• Etc

• Complicated and not easily understood
• Don’t always do what the user ‘expects’

15

Computers & People
Computers & Languages Other Than English

August 20, 2013

Challenges of other languages…
• Regardless of the encoding, other languages bring with them

challenges that are not as straight forward as English (which really only
has to deal with upper case and lower case equivalency)

• Simplified vs Traditional Chinese
• Special case handling not dealt with (or not dealt with properly) in

Unicode (like the eszet case in German, or the Latin character Æ, which
sometimes is replaced with AE)

• The nuances that have been developed over time, by speakers of the
language working around not having there language work properly (or
at all) on a computer (example the word cafe is supposed to be café)

• Users have certain expectations, that in those that speak those
languages are just as natural to them as upper case and lower case
equivalency is to English speakers. These all create issues when we try
to think about domain names in other languages. Especially when we
consider problems such as phishing and other potential for misuse,
misleading and abuse

Any info (title, subtitle etc.)
17

IDNs
… and DNS

August 20, 2013

So what does this mean for DNS?
• Well we needed to develop a way to make Unicode code

points available for use in domain names without hurting
backwards compatibility.

• Then we need to make sure we address the new issues this
creates around Unicode concerns, as well as meet the
expectation of users

• Some of these were addressed at the technical level with
the invention of a new ‘protocol’ IDNA – more on that
coming up

• Other issues were left to application implementers and
policy writers to address

Any info (title, subtitle etc.)
19

IDNs
IDNA

August 20, 2013

Enter IDNA…
• IDNA stands for Internationalized Domain Names in

Applications
• In the end we didn’t actually modify DNS, we left it alone, it

was too hard
• What we did was produce another protocol that is layered

on top of DNS and sits between applications and the DNS
• This is the IDNA protocol or standard
• There have been 2 versions, an early version in 2003, and a

new version called IDNA2008 that was produced to address
issues found with the earlier version of the protocol

• We will focus on IDNA2008

Any info (title, subtitle etc.)
21

So what is IDNA?
• Whilst it is a protocol in the dictionary definition of

the term
• It is NOT a protocol in the sense that DNS, HTTP or

EPP are protocols
• It’s really three main things:

• A way of converting a Unicode string into an ASCII string
so that it can be used in the DNS protocol

• A sequence of steps that a Registry must follow before
accepting a name for registration

• A sequence of steps that an Application must follow
when looking up a name in the DNS

 Any info (title, subtitle etc.)

22

IDNA Protocol
Converting Unicode to ASCII

August 20, 2013

Converting Unicode to ASCII
• Uses a process known as punycode encoding and decoding
• Puncycode takes a Unicode string and encodes it, using a reversible

algorithm into an ASCII string. E.g.:
• mgbti4d <- شكرراا

• The ASCII string can be converted back into the Unicode string using the
reverse process

• The ASCII string is then able to be used in place of the Unicode string in
DNS

• In order to signal to an application that the DNS string is to be interpreted
as IDN, the string is prefixed with the ‘tag’ xn– to become:

• xn--mgbti4d
• This is the domain name ‘thank you’ in Arabic as it would be seen in the

DNS. Only applications that understand IDNs will know that they need to
convert it to its Unicode form to display to users

• However older applications that don’t understand IDNs, will still continue
to use the domain name as normal, it just wont mean much to users that
see it

Any info (title, subtitle etc.)
24

U-Labels & A-Labels
• Not all valid Unicode strings are valid IDNA domain names
• The IDNA protocol defines which code points in Unicode are valid to

use in IDNA (for example the confusing dots are omitted)
• It also defines some special rules called ‘context rules’ that control the

use of certain code points (like the zero-width joiner) – code points
that are subject to these rules are given a name like ‘context-j’ or
‘context-o’ to define which rules they are subject to

• A Unicode string that is valid according to the IDNA protocol rules is
referred to as a U-Label

• An ASCII string that has been created from a valid U-Label is called an
A-Label

• An IDN domain name is any domain name where at least one of its
labels (one of the strings between the dots) is a valid U-label (or A-
label)

Any info (title, subtitle etc.)
25

So what does this mean?
• This means that IDNA is really, as its name suggests, an application

layer protocol
• In theory, the DNS infrastructure does not need to be modified in any

way to support IDNs
• However, DNS administration tools (including domain name Registries

and Registrars (and resellers)) have a lot of work to do
• This also means that all the work to support IDNs is required to be

done in Applications
• It also means that any protocol that has, what we call, a domain name

slot, may potentially need to be updated as well to allow the inclusion
of internationalised information. E.g. SMTP (email), Jabber, HTTP

• Efforts are underway on these (IRIs, EAI etc) but more work is needed
(more on this later)

Any info (title, subtitle etc.)
26

IDN Registrations
What Registries Must Do

August 20, 2013

So what must Registries (and
Registrars) do?
• Verify that an IDN name being registered is in Unicode NFC form and

reject it if not
• If the domain name is provided as an A-label format, generate U-label

version using punycode
• If the domain name is provided as a U-label form it is strongly advised

not to accept it to avoid any ambiguities
• Validate that both A-label form and U-label form are in fact related,

and reject if not
• Reject any name with leading combining marks (Unicode terminology)
• Reject any name that contains consecutive hyphens in the 3rd and 4th

positions (in the U-label – to avoid confusion with tagged ASCII names)

Any info (title, subtitle etc.)
28

So what must Registries do?
• Verify that the domain contains only valid code points as

defined by the IDNA standards, reject if it doesn’t
• Apply the joiner rules (context j rules), reject if these rules

fail
• Verify that for each context o code point, a rule exists in

the standard and that when the rule is applied the domain
name is still valid, reject if any of these rules fail

• If the domain contains any right-to-left code points apply
the BIDI rules, reject if any fail

Any info (title, subtitle etc.)
29

But that’s just according to the
protocol…

• In order to be diligent Registries, and to deliver on the

expectations of those that have spoken the languages for a
long time, Registries must also:

• Ensure that we protect against phishing and farming scams
• Determine and ‘deal with’ names considered equivalent (policy

issues)
• Further ensure that the IDN registrations makes sense – ensure

that names make sense in the desired language

• More typically these are referred to as:
• Verifying the name against the language table
• Generating blocked variants (Checking for duplicates)
• Activating appropriate variants

Any info (title, subtitle etc.)
30

IDN Registrations
Language Tables

August 20, 2013

Language Tables
• When registering an IDN domain Registries normally require you to

specify the ‘language’ of the registration
• A Registry can support one or more languages for registrations under

their namespace
• Registries will define the set of Unicode code points that make up the

language or languages supported for registrations in their namespace
• Whilst typically registries can define ‘languages’ as they want, ICANN

has rules that require all registries ‘accountable’ to ICANN to ensure
that all the code points in their language table(s) are from the same
script as defined by Unicode

• The distinction between language and script refers to where the code
points come from as apposed to the language, one script may be used
by many languages

Any info (title, subtitle etc.)
32

Language Tables
• The distinction between language and script refers to where the code

points come from as apposed to the language, one script may be used
by many languages

• An Arabic language table will include the Arabic glyphs from the Arabic
script

• A Farsi language table will include the Farsi glyphs from the Arabic
script

• By excluding the similar looking Farsi code point (Alef from before)
from the Arabic table we have helped to address issues such as phising

• However what if a namespace supported both Arabic and Farsi
languages

• This is where checking for duplicate names or ‘variants’ come into it…

Any info (title, subtitle etc.)
33

IDN Registrations
Blocking Variants

August 20, 2013

Checking for Duplicate Names
• Duplicate domains are domains that are

considered ‘the same’ as one another
• For ASCII domains ‘the same’ is simply a case

insensitive compare, e.g.
• example.com
• Example.com
• EXAMPLE.com
• ExAmPlE.com

• In this particular case this is enforced by the DNS
protocol

Any info (title, subtitle etc.)
35

However with IDNs...
• As discussed, there are many more cases where duplicate

registrations may exist e.g.

• No single, simple rule can be applied, i.e. just lower casing

does not help

Any info (title, subtitle etc.)
36

Convention,
visually confusing

or historic

Non-visual reasons Technical reasons

café.com
cafe.com

١۱١۱١۱١۱١۱.com
11111.com

اا ◌ٔٴ .com
(U+0627,U+0654)

 com.أأ
(U+0623)

Checking for Duplicate Names

• ASCII John’s Cafe (because of convention)
• johnscafe.com  Sacrificing the é

• IDN John’s Café (because now we can)

• johnscafé.com

• Shouldn’t the two be considered the same name?

i.e. Duplicates?

Any info (title, subtitle etc.)
37

Implementing duplicates – The
variant generation method

• The idea that one character is a variant of another

character e.g.
• ‘e’ and ‘é’

• When a domain is created using one representation the

other representation is also considered registered or
‘blocked’
• cafe.com
• café.com

• This is done by ‘calculating’ all of the variants

Any info (title, subtitle etc.)

38

Implementing duplicates – The
variant generation method (cont.)

• This can happen at time of registration in which case all the

variants are then stored for later comparisons

 or

• This can happen on input to all commands to the registry

(obviously very inefficient)

Any info (title, subtitle etc.)
39

Implementing duplicates – The
variant generation method (cont.)

• Calculating and storing duplicates introduces overhead

• Consider a name where there is only one variation of several of the
characters in the name e.g.

 e  é

 cafeeeeeeeeeeeeeeee.com
 cafeeeeeeeeeeeeeeeé.com
 cafeeeeeeeeeeeeeeée.com
 cafeeeeeeeeeeeeeeéé.com
 .
 .
 caféééééééééééééééé.com

 In this fictitious case there is 2 ^ 16 combinations i.e. 65,536 variations

 Any info (title, subtitle etc.)
40

Implementing duplicates – The
variant generation method (cont.)

• If we have a domain name with just 32 characters in it,

each with one variant we would have over 4 billion variants

• There has to be a better way!

• And there is...

Any info (title, subtitle etc.)
41

Implementing duplicates – The
canonical method

• Canonical representation of domain names isn’t new

• ASCII domain names use the concept, its built into the

protocol - lowercase

• The overall premise is that we assign each character a

canonical form

Any info (title, subtitle etc.)
42

What do we mean by character?
• A character, for the sake of this discussion, is a sequence of one

or more code points that represents one particular component
of a word.

a
is a character

 أأ
(single code point) is a character

 أأ
(multiple code points) is a character

Any info (title, subtitle etc.)

43

Assigning a canonical form

• Each character is assigned a canonical form
• You can think of it as the base form of the character
• In most cases it just be the character itself
• Sometimes another code point entirely
• Sometimes nothing at all
• The actual character chosen doesn't really matter – its just

a concept

Any info (title, subtitle etc.)
44

Using the canonical form
• Define all canonical mappings for your zone

• Perform a simple substitution of each character for

its canonical equivalent
• This generates the canonical form of the label being

registered

• Use this canonical form of the label as the unique

key for the domain registration representing ALL
forms of the domain name (without each of those
forms having to be generated and/or stored)

Any info (title, subtitle etc.)
45

Using the canonical form

• Lets assume that in our zone we allow the
following characters with the canonical mappings
listed:

a a
c  c
e  e
é  e
f  f

Any info (title, subtitle etc.)
46

Using the canonical form – An
example

• We register the name cafe’.com and compute the canonical

form
 café.com  cafe.com

• The domain is café.com but the unique label is cafe. So

when someone tries to register cafe.com we compute the
canonical form

 cafe.com -> cafe.com

• But this will NOT be allowed as a domain with that

canonical label is already registered

Any info (title, subtitle etc.)
47

Using the canonical form – Another
example

• The name cafeeeeeeeeeeeeeeee.com maps to

cafeeeeeeeeeeeeeeee.com  cafeeeeeeeeeeeeeeee.com

as does
caféeéeéeéeéeéeéeée.com  cafeeeeeeeeeeeeeeee.com

as does
caféééééééééééééééé.com  cafeeeeeeeeeeeeeeee.com

• So by storing the canonical form and checking all new

registration attempts against it we have blocked all other
registrations without actually having to calculate them all!

Any info (title, subtitle etc.)
48

More on canonical...

• Mapping names to a canonical form is nothing
new

• Exactly what happens in existing domain name registries

when we lower case names
• Implied canonical mapping between upper case and

lower case (implemented by a function)
• Just also happens to be enforced by the DNS protocol

itself

Any info (title, subtitle etc.)
49

Making canonical work for
Registries

• Just as we lower case the domain name provided

to Registry functions such as:
• Search
• Domain Check / Update
• Reserved List Matching
• WHOIS
• Etc.

• If we apply the canonical mapping to IDN names

passed to registry functions everything just works

Any info (title, subtitle etc.)
50

Benefits of using canonical

• It just works
• Its linear time regardless of the size of the domain names

and desired variant configuration
• It provides speed and efficiency benefits, especially when

compared to variant generation methods
• It saves space and memory
• Its a simple algorithm that is easy to implement, less error

prone and easier to optimise

Any info (title, subtitle etc.)
51

IDN Registration
Activating Variants - Bundles

August 20, 2013

Why Bundles?

• Sometimes blocking is just not enough
• In some scenarios it make sense that a Registrant

can make use of multiple versions of a name e.g.
• cafe.com
• café.com

Any info (title, subtitle etc.)
53

In simple terms...

• Its the same as the generating variant model, so it has the
same issues
• If in our zone configuration we said that we wanted the following
character variant ‘provisioned’ or used to create ‘bundles’

 ١۱  1

• And then we registered the name

 ١۱١۱١۱١۱١۱١۱١۱١۱.com

• We still end up with...

Any info (title, subtitle etc.)

54

Example
• The following variants to be provisioned

 ١۱١۱١۱١۱١۱١۱١۱١۱.com
 ١۱١۱١۱١۱١۱١۱١۱1.com
 ١۱١۱١۱١۱١۱١۱1١۱.com
 ١۱١۱١۱١۱١۱١۱11.com
 .
 .
 .
 11111111.com

• Which in this case would be 256 variants to be calculated, stored and
provisioned in the zone file

• Canonical mappings can’t help us here

Any info (title, subtitle etc.)
55

Bundles (cont.)

• Character variants for blocking of registrations make all
combinations important

• ... But when considering bundling.. If we look at the reason
people desire variants, another option is presented

Any info (title, subtitle etc.)
56

Continuing our example...
• In this case it makes sense that someone may enter either of the

following domains:

 ١۱١۱١۱١۱١۱١۱١۱١۱.com
 11111111.com

• But does it really make sense that someone would type the following
domains names:

 ١۱1١۱1١۱1١۱1.com
 ١۱١۱١۱١۱1111.com

• All combinations need to be blocked (which canonical mappings will
do) , yet only two out of the 256 variants provisioned in the DNS are
required.

Any info (title, subtitle etc.)
57

IDN Registration
Introducing Mutal Exclusion

August 20, 2013

Mutual Exclusion
• Mutual exclusion is not a new concept, it is used

everywhere in modern-day life
• If we apply it to domain name variants we can achieve the

desired behaviour e.g.

Any info (title, subtitle etc.)
59

Primary Grouping Sub-Grouping

Numerals English Numerals
e.g. 1,2,3,4,5...

Arabic Numerals
e.g. ١۱٢۲٣۳٤٥...

So the rule is...

• If a domain name contains any characters that are in one
sub-group, it is not allowed to contain any characters from
other sub-groups of the same primary group to be
provisioned in the DNS

• i.e. The characters in one sub-group are mutually exclusive
to the characters in another subgroup

Any info (title, subtitle etc.)
60

Returning to our example...

• These are allowed:

 ١۱١۱١۱١۱١۱١۱١۱١۱.com
 11111111.com

• But these are not:

 ١۱1١۱1١۱1١۱1.com
 ١۱١۱١۱١۱1111.com

Any info (title, subtitle etc.)
61

Primary Grouping Sub-Grouping

Numerals English Numerals
e.g. 1,2,3,4,5...

Arabic Numerals
e.g. ١۱٢۲٣۳٤٥...

Other bundling considerations
• Allowing Registrants to turn parts of a bundle off

or on
• How?

• Impacts on other services offered
• e.g. DNSSEC

• Charging model
• Should there be one?

• Flow on effects to accounting and reporting
• Is a bundle of three domains one registration or three?

Any info (title, subtitle etc.)
62

IDN Registrations
Why Variants Matter

August 20, 2013

Why Variants Matter (some
examples)?

• Hopefully by now you can see the ‘technical’ reasons for variants
• But why is it important that we deal with this?
• Primarily security

• Imagine person one owned café.com and person two owned cafe.com
• Its hard to tell on a billboard as you zoom past in your car if the Arabic

name included the combining marks or not

• Also to meet user expectations
• Users expect things to work as they use them in there daily life
• When a Farsi speaking person hands an Arabic speaking person a

business card written in Arabic script, most user wont understand why
the email wont work (even though he is typing the characters as they
appear on the card)

Any info (title, subtitle etc.)
64

IDN Registration
Validating Local Language Rules

August 20, 2013

What are local language rules?
• In short, they are and can be anything

• Which Unicode code points make up the language
• Handling of edge cases

• ae  æ
• ss  ß
• Final form sigma

• and so on

• Important that the business rule engine is flexible
and customisable enough to handle these
requirements

Any info (title, subtitle etc.)
66

IDN Registration
Putting It All Together

August 20, 2013

Effects on Registrars, Registrants
and End Users

• It is different to ASCII domains
• Registrars have a harder job to do now

• Interpret what the Registrant wants
• Turn it into something remotely protocol valid (to map

or not to map?)
• Explain all of this to the Registrant

• Provide tools to Registrars
• Ensure consistent message to Registrants and end

users

Any info (title, subtitle etc.)
68

Many other areas to consider

• Registrars & Others understanding

• IDNA – Internationalised Domain Names in
Applications

• So that leads us to….

Any info (title, subtitle etc.)
69

IDNs for the rest of us
Putting It All Together

August 20, 2013

Problems for all…

• Support for variants
• Variants making them useful (useable?) beyond just blocking

• Domain Name slots – in applications
• IE only shows u-label if language configured in browser
• Hyperlinks (xn-- or u-label?)
• Firefox only if in known good list

• Domain Name slots – in protocols
• Email
• Jabber
• WhoIs / WEIRDS
• etc

Any info (title, subtitle etc.)
71

Problems for all…

• Hosting & DNS Providers (ISPs)
• Management tools
• Web hosting
• Email
• Educating end users

• Confused about how to configure ‘servers’
• Only used as websites… who know what issues are hiding?
• Digital certificates?
• People are still confused by the standards – even those that

created them!!!
• Variants

Any info (title, subtitle etc.)

72

